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The Constraint, Force  Algorithm, as originally  described by  Fi.jany 

et al., calculates the forward  dynamics of a system  comprising N rigid 

bodies  connected  together  in an unbranched  chain  with  .joints  from a 

restricted class of joint  types. It was designed  for  parallel  calculation 

of the dynamics, and achieves  O(1og N )  time complexity  on O ( N )  

processors. This paper presents  a new formulation of the  Constraint 

Force  Algorithm that corrects  a major limitation in the original, and 

sheds new light  on the relationship  between it and other dynamics 

algorithms. The new  version is applicable to systems  with  any type 

of joint, floating  bases, and short branches off the main chain. It is 

obtained using  a  new  technique  for analysing constrained  rigid-body 

systems by  means of a  change of basis  in a dual system of vector 

spaces. This new technique is  also  described. 

1 Introduction 

The Constraint Force Algorithm (CFA) was the first algorithm to  calculate 

the forward dynamics of an N-body robot  manipulator in  O(1og N )  time on 

a parallel  computer  with O ( N )  processors. The original version, as described 

in [l], was applicable  to a syst,em comprising a fixed bast. and N rigid bodies, 
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connected  together in an  ~~rlbranchecl  chain by joint,s from LL rest,ricted class 

of joint  types.  This was subsequently  extended to floating  bases in [2]. 

This  paper  presents a new formnlation of the CFA that  corrects a major 

limitation  in  the original  formulation,  and  sheds new light on  the  relation- 

ship between the CFA and  other  dynamics  algorithms.  It also presents  an 

improved method for dealing  with  floating  bases that is easier and  more effi- 

cient than  the  method  described in [2]; and it extends  the CFA to branched 

kinematic  trees  consisting of a single  main  chain and  any  number of short 

side-branches. Floating bases are  implemented by means of a 6-DoF  joint, 

and  short  branches  are  implemented using articulated-body  techniques. 

The original  formulation, as described  in [l], includes an  incorrect  usage 

of orthogonal  complements. Specifically, the  inner  prodlwt  that is used to 

define orthogonality is non-invariant and dimensionally  inconsistent.  See [3] 

for a full explanation of the  problem.  In [I], the problem is finessed by 

observing that if the  algorithm is restricted to  certain  types of joint  then it 

is possible to formulate  the affected equations (Eqs. 6 and 7) in  such a way 

that  the coefficients of the dimensionally-inconsistent terms  are zero. The 

new Fornndation removes the source of the problem by avoiding orthogonal 

complemc~~t ,~ altogether.  The  imrnediate resldt is t,o r(move a11 rest,rictions 
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011 joint, t y p .  

The new formulation uses a ‘change of basis‘ (COB) technique that has 

not  been  previously  published, so a brief description is included  in  t8his  paper. 

The  method  can be summarized as follows:  given the  equation of motion of 

a rigid-body  system  in  the  form of a linear equation  between  acceleration 

and force,  plus an  acceleration  constraint to be imposed  on the  system,  it is 

possible t.o construct npw bases on  the force and  acceleration  vector  spaces 

such  that  the  equation of motion is decoupled into two independent  sub- 

systems,  one of which is completely immobilized by the given constraint, 

while the ot.her is completely  unconstrained.  Because the two  subsystems 

are  independent, a constraint imposed  on one has no effect on  the  other. 

This technique  can  be used both  to derive the CFA and  to derive con- 

ventional  dynamics  algorithms;  and it, reveals a simple  relationship  between 

the two  via an  equation  that  can  be  paraphrased as  ‘constrained  dynamics = 

unconstrained  dynamics - immobilized dynamics’.  Conventional  algorithms 

are derived from the LHS of this  eqlmtion,  and  the CFA from the RHS. 

The COB technique  does; of course, bnild on much existing work. The 

idea of using separate vector spaces for motion and force vectors  originates in 

analyt,ical  mechanics; a 1 ~ 1  the idea of Ilsing separat8e mot,ion and force spaces 
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t,o descritw the freedom and  constraint, spaces of a robot in contact, with 

its environment, has become  widespread in the  area of hybrid  motion/force 

control [4, 5 ,  61. Earlier works in this  area  tended to  use a single space 

containing  both  types of vector,  and some of them suffer from an incorrect 

use of orthogonal  complements;  but a correct version of the single-space 

analysis  can  be  found  in [7, 81. The argument  in  favour of two spaces is put 

in [ 5 ] .  These works partly inspired the present work. 

The  method of constructing  subspaces of freedom and  constraint is also 

not new.  Although  the  details differ in  each  case, the  same basic method is 

apparent in [9, 7, 8, 4, 5, 61. The  method  presented  here is slightly  more gen- 

eral  in that we do  not  require  the  parent  spaces  to have the  special  properties 

of twists  and  wrenches,  do  not  require  the  dimension to be 6, and place no 

limit on the  number of bodies that  are  subject  to  constraints. 

On  the  other  hand,  the  particular decoupling  presented  in this  paper is 

qllite different, from that presented in [6], which is done llsing eigenvalues and 

eigenvectors, and solves a different problem. 

The rest of this  paper is organized into  three sections. The first describes 

the COB technique in general terms;  the second shows how it is applied 

t,o consttrained  rigid-body  dynamics; and t,he third describes t,he  new CFA 
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2 The Change-of-Basis  Technique 

Let U and V be two  n-dimensional  vector  spaces with a scalar  product defined 

between them.  This  product  takes one argument from each  space; so, if u E U 

and v E V .  then u.v  is defined, but u-u and v -v  are  not.  The expression v.u  

is permitt,ed as a synonym for u . v. A mathematical  structure comprising 

these two spaces and  their  scalar  product is called a system of dual vector 

spaces,  and  may  be  denoted (U,  V, . ) .  

If u . v = 0 then u and v are  said to be  reciprocal. They  cannot  be 

said to be orthogonal, because  orthogonality is a relationship defined be- 

t,ween members of the  same  space.  The  term ‘reciprocal’  has  been borrowed 

from screw theory  in  order  to avoid the  term  ‘orthogonal’;  but  note  that  its 

meaning  here differs from its usual  meaning  in screw theory,  where  it  has 

a geometxical interpretation based on t3he special  properties of screws, and 

where  concepts like self-reciprocity are defined. 

Two subspaces, S C U and T 5 V ,  are reciprocal if every element of S is 

rc)ciprocal to every  element of T ,  and this  relationship is denoted S I 5 ” .  In 



general,  infinitdy  many spaces T satisfy S I T for a giver1 S ;  hit, t,he space 

of largest  dimension is unique,  and is called the reciprocal  complement of S ,  

denoted SI. An alternative definition is 

S ~ = { v ~ V u E S ,   u . v = O } c V .  

The  sum of the dimensions of S and SI is n. 

Let us now introduce some  bases  on U and V .  Let {dl, . . . , d,} be an arbi- 

trary basis on U .  For each such  basis, there  exists a unique  basis {el, . . . , e,} 

on V with  the  property 

1 if i = j  

0 otherwise 
di . ej = 

A pair of bases that  satisfy  this  condition is called a reciprocal  basis-pair. If 

[u] and [VI are n x 1 matrices of coordinates  representing u and v in bases 

that form a reciprocal  pair then u . v = [uIT [VI. 

The reciprocal  basis-pair plays a role  similar to  that of an  orthonormal 

basis in an inner  prodllct  space, but  there  are  important differences. In 

particdar,  there  are n,2 freedoms available  in choosing a reciprocal  basis-pair 

in (U, V, . ) ,  but only n(n,- 1)/2 freedoms available in choosing an  orthonormal 

basis on an  n-dimensional inner proclllct, space.  Thew  extra  freedoms  are 

7 



-bb-error = = 

Figure 1: Orthonormal basis (a) vs.  reciprocal  basis-pair (b). 

essential to  the success of the COB technique. 

The difference is illustrated by the 2-D example shown in  Figure 1. The 

orthonormal basis (a) consists of two unit vectors at right  angles. As there is 

no  freedom to  alter  the  lengths of the vectors or the angle  between them,  the 

only remaining freedom is the overall orientation of the  basis.  On  the  ot,her 

hand,  the reciprocal  basis-pair (b) consistss of any two linearly-independent 

vectors  in  one  space (e.g. dl and dz) plus two vectors in the  other  space  that 

are uniquely  determined by the  reciprocity  conditions.  In  this  case,  there 

are four freedoms  available.  Although the  concepts of magnitude  and angle 

are  not, in general, defined on (U,  V, . ) ,  we have used them a s  visual  cues 

to  illustrate  the  reciprocity  conditions: dl is shown at right  angles to  e2 to 

indicate dl . e2 = 0, and so on. 

From  here  on, we swit,ch from using abstmct vectors  (also  known  as 

coordinate-free  vectors) to using coordinat,e-based  representations of vectors, 

and  assume  that a reciprocal  basis-pair is being 11sed. To avoid a messy 

change of notation ("9. from u to [u]). all syrnhols denoting  vectors will 
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now refer to  coordinttt,e vect,ors, cwxpt, w h t ~ c  t.splicitly s t a k d  to t,hc con- 

trary. 

Once we have coordinate  vectors, we can define matrices to represent 

subspaces. If S is an  r-dimensional sllbspace of U then  it  can  be  represented 

by any n x r matrix S satisfying S = Range( S). If So is one such  matrix  then 

all  others  can  be expressed in the form S = So A where A is any  nonsingular 

r x r matrix.  The columns of S can he thought of as a set of basis  vectors 

on 5 ’ ;  and  any element of S can  be expressed in the form S a,  where a! is an 

r-dimensional  vector of coordinates. If two subspaces S and T satisfy S I T 

then  any two matrices  representing  them  satisfy ST T = 0 .  

Let B1 and B2 be two reciprocal  basis-pairs in (U,  V, . ) ,  and let u1,  u2, 

v1 and v2 be representations of the  abstract vectors u and v in B1 and B2. 

The  transformation rules for changes of basis are 

where Xu is a coordinate  transformation  matrix  that performs the  change 

of basis in U ,  and Xv does the  same in V .  The  abstract  scalar  product, 

u . v, is inht!rcntiy invariant, with respect, to changes of basis; so we know 
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With two vector  spaces,  there  are four types of linear mapping  that we 

can define: U H U ,  U H V ,  V H U and V H V .  Each  has  its own 

transformation  rule, which is easily  deduced  from the  corresponding  rules for 

V H V :  D2=XvD1XV1. 

Let, us now  move on to  the COB technique  itself.  Suppose we are given a 

symmetric, positive-definite  mapping M : U H V and  an  arbitrary  subspace 

S1 c U .  It is always possible to find three  additional  subspaces, S2, TI and 

T17 satisfying  the following equations: 
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where @ means  direct  sum  and M S I  is the image of S I  mder  tJhe  mapping 

M. The  three  subspaces are uniquely determined by the  problem,  but  not 

their  matrix  representations.  In  fact,  there  are enough additional freedoms 

in the  matrix  representations to  allow us to impose  the following additional 

constraint: 

With  this  extra  condition,  the  solution is 

Tz Sf ,  

T1 = M S1 (STM Si)-', 

S2 = M-l T2 (T;M-lT2)-l. 

There is still a degree of arbitrariness in  calculating T2 from SI, but T1 is 

now uniquely determined,  and Sz is unique for a given T2. Incidentally,  it 

is not necessary to  start with SI; we could  have started  with  any one of the 

other  three  spaces. 

In  solving this  problem, we have in effect defined a new reciprocal basis- 

pair  with basis vectors s, in U and t i  in V ,  where si and ti are  the i"" columns 

of the n X n matrices [SI Sp] and [T1 T2] respectively. This basis-pair has 

two special  properties: 
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1. the first T basis  vectors in I /  spar1 the given sllbspacc S1, ancl 

2. the given linear  mapping is block-diagonal,  comprising an T x 'I' block 

that  maps S1 to Tl and  an (n-T) x (n-T) block that,  maps S 2  to T2. 

The first property is obvious.  To see the  second,  simply  transform M to  the 

special  basis-pair. The  coordinate  transformation  matrices  are 

xu = [Tl TalT, x v  = [Sl % I T ?  

x-1 u = [SI s211 xi1 = [Tl T211 

and  the value of M in the  special basis-pair is (using  Eq. 2) 

1 STMS1 

X v M X G 1 =  I 
L 

If  we separate  the two blocks 

the original  basis-pair, the result 

0 (TTM-lT2)"l 1 ' 
and  transform  the whole equation back to 

is 

This  equat,ion expresses M as the sum of two components:  one  that,  maps 

SI t,o TI ancl one t,hat, maps S2 to TJ. The ecl1livalent. exprc>ssion for M" is 
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obtained by pre- and  post-multiplying  this ecillatjioI1 by M-': 

3 Applying COB to Constrained  Dynamics 

Now let us apply  the COB technique to  the dynamics of a physical system. 

Suppose we are given an  unconstrained  system for which the  equation of 

motion is u = "'v, where u E U is the  (unknown)  output variable and 

v E V the  (known)  input  variable;  and  suppose  this  system is subjected to  

a known constraint in the form u E S1 c U .  The  equation of motion of the 

constrained  system is 

where v, E V is the  unknown,  constraint-maintaining  input, which is as- 

sumed to obey  the principle of virtual work. Transforming this  equation to 

the  special  basis-pair  produces 



where 

J 

= xu u, 

Because the  system  matrix i: j block-diagonal, this  equation  actually  repre- 

sents two independent  subsystems: 

a1 = (STM S 1 Y  ( P ,  + r1>, (4) 

(Y, = T;M-'T~ ( p ,  + 7,) .  (5) 

The given constraint  translates  into a 2  = 0 ,  so the  subsystem in Eq. 5 

is completely  immobilized; and  the principle of virtual work requires that 

ST v, = 0, which implies y1 = 0, so the  subsystem in  Eq. 4 is independent of 

the  const,raint.  The  equation  of  motion of the  constrained  system is therefore 

a1 = (STM SI)-'  p1 (6) 

in the  coordinate  system defined by SI and TI, or 

u = SI (STM SI)-' STV 

in the original  basis-pair. 

The  matrix expression on the RHS of t,his equation is the  unconstrained. 

or act,i\ro, component of M-': thr component  that,  maps TL t,o S I ,  and that' 
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accolmts for the  dynamics of the  constrained  system. Eq. 3 provides 11s with 

an  alternative expression for this  component: 

In other words, the  system  matrix of a constrained  dynamical  system is the 

difference between the  system  matrix of the  unconstrained  system  and  the 

mattrix describing the immobilized  dynamics.  (Note that  this is a general 

result:  there is no assumption at this  stage  that  the physical  system is a 

rigid-body system.) 

We can use Eq. 8 to derive alternative expressions for Eqs. 6 and 7. 

Applied to Eq. 7, the  result is 

An alternative expression for Eq. 6 can  be  obtained by premultiplying  both 

sides of Eq. 9 by TT, resulting in 

hit, a more weful version can be obtained by applying a more  general  map- 

ping.  Consider the  set of subspaces Ti that,  satisfy Ti @T2 = V. For each  such 

subspace,  there is a lmiqlle matrix T', t,hat, satisfies both Range(T',) = 7'; a d  
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ST T', = 1; and any vector v = T1 pi + T2 p2 can be decomposed  rmiclrdy 

into 

v = T', + T2P/2. 

If Ti = Tl then T', = TI and = p2, otherwise p', # , L I Z .  Substituting  this 

expression for v into Eq. 9 and premultiplying both sides by TiT produces 

al = TiT (M-l - M-l T2 (TTM"T2)" TT M-l) T', pl. (10) 

The point of this exercise is that  there exist values of T', that  are much easier 

to  calculate  than TI. 

As we shall  see  in  the  next  section,  this  equation  leads  to  the CFA, whereas 

Eq. 6 leads to  the Newton-Euler  factorization of the mass  matrix [lo], which 

is characteristic of standard  dynamics  algorithms. 

4 The  Constraint Force Algorithm 

The CFA. like many  other  dynamics  algorithms, uses an inverse dynamics 

function  to calclllat,e all of the force  terms that  depend only  on  position and 

velocity  variables and  other known qlmntities. This is a standard  technique, 

and involves calling the inverse dynamics  function  with  the  acceleration vec- 

tor set t,o zero, and sllbt,ract,ing thc  resr~lt from the inpllt, force vector [ll]. 

lo: 



Having already  compensated for these effects, we are free to simplify the 

system by ignoring  gravity, setting  all velocities to zero, and so on. 

Given a system of N independent rigid bodies at  rest,  the  eqmtion of 

motion of the  system  can  be expressed as a set of equations 

where ai E M6 is the  spatial  acceleration of body 2 ,  fi E F6 is the  spatial 

force applied to  body i. and Ii : M6 H F6 is the  spatial  inertia of body i .  

Explicit  expressions for ai, fi and Ii, and various other  spatial  quantities, 

in terms of 3-D  linear and  angular vectors and  matrices  can  be found  in 

[9, 1, 101 and various other  sources; but, note  that  the vectors we use here 

require that  the 3-D  linear-component vector be placed either  consistently 

above or consistently below the 3-D  angular-component  vector.  This is at 

variance with  the  arrangement in [9] and  certain  other works, where the line- 

vector  component  (angular  motion or linear  force) is placed on  top  and  the 

free-vector component below. 

The  appearance of t,he two spaces M6 and F6 is an  important  mathemat- 

ical detail.  They  contain  the  motion-type  and force-type spatial  vectors, re- 

spectively, and  they for111 a tlllal system (M6,  F6, .) wi th  t,lw reciprocal  scalar 
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prodllct,. This  formal  separation of vect,ors irlt,o dist.inct force and  motion 

spaces is the first step in applying  the  COB  technique. 

We avoid using the  terms  ‘twist’  and  ‘wrench’  to describe  these  vectors 

because there is no need for them  actually  to  be  twists or wrenches. They 

could just as easily be vectors of generalized  accelerations and forces. We 

use only the dual-system  property,  not  any of the special properties of twists 

and wrenches. 

The individual  equations  in Eq. I1 can  be combined into a single com- 

posite  equation  that describes the whole system: 

where f = [fir,. . . , f$IT E F6N, a = [a:, . . . , E M6N and I = diag(Ii) : 

M6” H F6N. The spaces M6N and F 6 N  are Cartesian  products of N lots of 

M6 and F6; and  they form a dual  system, ( M6N, F6N, - ) ,  which enables  the 

COB technique to be  applied globally to  the whole system. 

The  equation of mot,ion of a robot mechanism  can be obtained by sub- 

jecting  the  free-body  system  to a kinematic  constraint, that models the effects 

of t,he joints. Let the  robot mechanism  consist of N movable links  numbered 

1 . . . 1V from base t,o tip. OIW fixed. base link nnmbered 0, and N joints num- 



bered 1 . . . N slwh that,  joint ,i connects from link i - 1 to link i. Let hi and 

q i  be  the  motion axis (or subspace)  and  acceleration variable of joint i ,  and 

let ri be  the  active  joint force at joint i (after  subtraction of the inverse- 

dynamics  force). As all velocity terms  are  already  accounted for, the bodies 

are  taken  to  be at rest. 

Each  joint  imposes  an  acceleration  constraint of the form 

and  the  active  joint forces are  related  to  the link forces by 

where fJi is the  total force transmitted from link i - 1 to link i through  joint i 

(so fJi = fi + fJi+l). These  equations  can  be  combined  into  two  system-wide 

equations 

P a = H q ,  

where H = diag(hi) : M" - q = [ q r f ,  . . . , q ; I T  E M", = [ T I , .  , . , T N ]  E T T T  

F" and n is the degree of freedom of the  robot mechanism. The  matrices 

P : MGN c-t M 6 N  and PPT : F6N H FfiN serve to propagate  information 
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between  links, and  are given by 

Each block is a 6 x 6 zero, identity or negative identity  matrix. P corre- 

sponds  to PT in [I] (not P ,  as  might at first appear,  because of the reversed 

element-numbering  scheme)  and P-' to $* in [lo]. The  apparent differences 

between P and  these  other  matrices is simply an  artifact of our choice of 

coordinates:  the  equations in this section are  expressed, for simplicity,  in 

absolute  coordinates.  Transforms  into link coordinates  can  easily  be  added 

a t  a later  stage. 

To apply  the COB technique to this  system, use 

where H" = diag(hf)  and  the matrices hf represent  the  spaces of possible 

constraint forces for each joint.  The  resulting  equation of motion is 



or, in terms of joint force and  acceleration, 

q = (H*P-*I P - ~ H ) - ~  r.  (15) 

On comparing  Eq.  15  with  Eq. 3 in [lo],  it can be seen that HTP-T I P-' H 

is simply  the  standard, Newton-Euler  factorization of the  joint-space mass 

matrix, which leads  directly to  the Newton-Euler algorithm for inverse dy- 

namics,  and  indirectly to several 0 ( N 3 )  algorithms for forward dynamics, 

including the composite-rigid-body, or Walker-Orin algorithm.  The CF fac- 

torization of the  mass  matrix  appears in the  alternative form of Eq. 15, which 

is obtained  via  Eq. 10: 

where. for computational  reasons, 

T', = P* I,= H ( H ~ I ~ H ) - '  

and 1.y : M6N H F6N is an  arbitrary, block-diagonal SPD mapping. It, 

is permissible to  equate IX with I; but a better choice for computational 

plxposes is whichever mapping  happens  to  be tjhe ic1entfit,y matrix in tjhe 

clm-ent  basis-pair. 



Although Eq. 16 is more  complicat,ed t h a n  Eq. 15, and involves more 

calculations,  every step in the  evaluation of Eq. 16 can  be  accomplished  in 

O(log(N))  time or better  on a compllter  with O ( N )  processors. The  same is 

not  true of Eq.  15. The  details  are explained in [l]. 

Equation 16 is the correGt version of the CFA. On  comparing  it  with 

Eq. 22 in 111, equating W in that  equation  with HI here,  the only difference 

is the  appearance of P7-l in  t,hat  eqlation where T’, appears  here.  This 

difference can  be  traced back to Eqs. 6 and 7 in [l], where the  notion of 

orthogonal  complements is used  incorrectly (see [3]). 

This version is dimensionally  correct  and  invariant  with  respect to changes 

of basis (provided you remember to use t,he correct  transformation  rule for 

each  quantity);  and it, works for  any  type of joint.  It also works for floating 

bases. since a floating-base system  can be simdated by a fixed-base system 

with a 6-DoF joint  between the fixed base and  the first, moving body, which is 

the floating base. This  approach to fioating bases is easier and more efficient 

than  the  method  described in [2]. Note  t,hat h;’ has  dimensions 6 x 0  for a 

6-DoF  joint,, which means that it, contribllt,es six rows and zero columns to 

HI,  and all of the  elements  on those  six rows are zero. 

The CF.4 can be ext,entled t o  allow short, side branches by replacing  t,he 
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original set, of !V independent rigid bodies  with a set, of N independent 1- 

handle  articulated bodies [9]. No part of the CFA needs to  be  changed, but 

two additional  calculations  are  required: 

1. After the inverse-dynamics  calculation, but before the first step of CFA, 

run  the  articulated-body  algorithm (ABA) in  parallel on each of the 

articulated  bodies,  up  to  the  point where  all the  articulated-body iner- 

tias have been  calculated (i .  e., the end of step 1 in [9], or up  to Eq. 39 

or Eq. 46 in [12]). 

2. After the last, step of CFA, use the known spatial accelerations of the 

bodies on  the  main  chain to finish off the ABA calculation. 

If the  lengths of the side  chains  are  no  greater than O(1og N ) ,  then  this  ad- 

ditional  calculation  does  not affect the  asymptotic  time complexity of the 

CFA. Indeed,  the overall efficiency of this  extended CFA, measured in terms 

of calcldations  per  body, is actually  slightly better  than  that of basic CFA 

because the ABA has a lower calculations-per-body  collnt  than  CFA. No- 

tice also that  the  extended CFA is capable of calculating  the  dynamics of a 

system  contraining O ( N  log N )  bodies in O( log N )  time  on O( N )  processors, 

provitled it, has  tht.  right  connectivity. 
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5 Conclusion 

This  paper  has presented a new technique for analysing  constrained rigid- 

body  systems by means of a change of basis in a dual  system of vector  spaces, 

and a new formulation of the CFA using this technique. This new formu- 

lation is invariant, dimensionally-correct, and works for any  type of joint, 

including the 6-DoF  joint that is used to model  floating-base  systems. It also 

caters for short, O(log N)-length side  branches off the  main  chain, which are 

implemented  using  articulated-body  equations.  Finally,  the new formulation 

shows that  the relationship  between  the CFA and conventional dynamics al- 

gorithms is explained by an equation  that  can  be  paraphrased as follows: 

‘constrained  dynamics = unconstrained  dynamics - immobilized dynamics’. 

Conventional  algorithms  are  derived from the LHS of this  equation,  and  the 

CFA from the RHS. 
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